New algorithm for the computation of the partition function for the Ising model on a square lattice K.Malarz¹, M.S.Magdoń-Maksymowicz², A.Z.Maksymowicz¹, B.Kawecka-Magiera¹

and K.Kułakowski¹

¹ AGH-UST, Kraków, Poland

² Agriculture University, Kraków, Poland

1 Introduction

- A calculation of the partition function Z exactly in the thermodynamic limit N → ∞ is equivalent to knowledge of all equilibrium properties of a given system.
- Even for a finite system of N spins our computational ability is limited by the number of the system configurations, which is 2^N.

1.1 The Ising Model

• only two spin states are possible, say "up" and "down" ($S_i = \pm 1$)

$$E = -J\sum_{\langle ij\rangle} S_i S_j - H\sum_i S_i$$

$$J_{ij} = \begin{cases} J_{ji} = J & \text{for NN} \\ 0 & \text{otherwise} \end{cases}$$

1D: $H = 0 - T_C^{1D} = 0$

2D: H = 0

$$T_C^{2D} = \frac{2}{\ln(1+\sqrt{2})} \approx 2.2691 \ [J/k_B]$$

$$m(T) = \sqrt[8]{1 - \sinh^{-4}(2J/k_BT)}$$

3D: $H = 0 - T_C^{3D} \approx 4.5115 [J/k_B]$

Figure 1: m(T)

1.2 The Energy *E* of a Given Spin Configuration

$$E(n,k) = 2J(k - L^2 + L) - H(L^2 - 2n), \quad (1)$$

- n # of spins pointing "up" (say $S_i = +1$)
- k # of anti-parallel bonds between the NN $(S_i S_j = -1)$
- L the linear size of the lattice.

1.3 The Partition Function

$$Z = \sum_{n,k} \Omega(n,k) \cdot \exp[-\beta E(n,k)]$$
(2)

- Ω(n,k) # of lattice configurations with given numbers n and k
- $1/\beta = k_B T$
- k_B is a Boltzmann constant
- and *T* is temperature

Then, the average value of any quantity A may be calculated as

 $\langle A \rangle = \frac{1}{Z} \sum_{n,k} A(n,k) \cdot \Omega(n,k) \cdot \exp[-\beta E(n,k)].$

(3)

The magnetic susceptibility per spin χ may be also expressed in the terms of *n*, *k* and *L*:

$$\chi/N = \beta \left(\langle S_i^2 \rangle - \langle S_i \rangle^2 \right) =$$

$$= \beta \left(\langle (2n - L^2)^2 \rangle - \langle 2n - L^2 \rangle^2 \right),$$
(4)

where the index k enters through the averaging procedure.

A computation of the partition function (2) requires an evaluation of the histogram $\Omega(n,k)$.

The CPU time *t* [sec] necessary for investigation of *M* different configurations of 8×8 large 2D Ising lattice on SGI 2800 machine.

10⁵ 10⁶ 10⁷ 10⁸ 10⁹ 10¹⁰ 0.86 6.90 66.4 660 6648 65752 $2^{64} \approx 10^{19} \rightarrow t = 4.5 \times 10^{6}$ [years]!

2 Calculations

2.1 The algorithm

$$\Omega_{4\times4}(n,k) + \Omega_{4\times4}(n,k) \to \Omega_{8\times4}(n,k)$$
$$\Omega_{8\times4}(n,k) + \Omega_{8\times4}(n,k) \to \Omega_{8\times8}(n,k)$$

or

$$4 \times \Omega_{4 \times 4}(n,k) \rightarrow \Omega_{8 \times 8}(n,k)$$

0011 0101 1001 0110_{bin} = 13718_{dec} $L = 4 \rightarrow \texttt{net} \in [-2^{15}, 2^{15})$

However, the procedure requires storing

information on the Ω dependence not only on n

- and k, but also on b^r the state of the
- *r*-sites-long lattice border.

1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 $0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$ $0 \le b^8 \le 255$

 $\begin{array}{l} 0110 \ 0011 \ 0101 \ 1001 \\ 0 \le b^7 \le 127 \end{array}$

$$\Omega_{8\times4}(b^8, n_1 + n_2, k_1 + k_2 + k') =$$

$$= \sum_{\substack{b_1^7, n_1, k_1 \\ b_2^7, n_2, k_2}} \Omega_{4\times4}(b_1^7, n_1, k_1) \cdot \Omega_{4\times4}(b_2^7, n_2, k_2), \quad (5)$$

where $0 \le k' \le 4$ is the additional number of anti-parallel bonds and b^8 is combined from b_1^7 and b_2^7 .

$$\Omega_{8\times8}(n_1+n_2,k_1+k_2+k'') =$$

$$= \sum_{\substack{b_1^8,n_1,k_1\\b_2^8,n_2,k_2}} \Omega_{8\times4}(b_1^8,n_1,k_1) \cdot \Omega_{8\times4}(b_2^8,n_2,k_2), \quad (6)$$

and again $0 \le k'' \le 8$ is the number of additional anti-parallel bonds.

2.2 The implementation

&

&

n=n+IAND(ISHFT(net,-i),1)

k=k+IEOR(IAND(ISHFT(net,-i+1),1),

IAND(ISHFT(net,-i),1))

k=k+IEOR(IAND(ISHFT(net,-i+L),1),

IAND(ISHFT(net,-i),1))

1001 1010 1100 0110

iborder_7=IAND(net,15)

- & +16*IAND(ISHFT(net,-7),1)
- & +32*IAND(ISHFT(net,-11),1)
- & +64*IAND(ISHFT(net,-15),1)

 $15_{\text{dec}} = 1111_{\text{bin}}$

iborder_4_1=IAND(iborder_7_1,15) iborder_4_2=IAND(iborder_7_2,15) link=IEOR(iborder_4_1,iborder_4_2) kk=0DO i=0,3 kk=kk+IAND(ISHFT(link,-i),1) ENDDO

iborder_8

- & =ISHFT(IAND(iborder_7_1,120),-3)
- & +ISHFT(IAND(iborder_7_2,120),+1)

$120_{\text{dec}} = 1111000_{\text{bin}}$

 $15_{\text{dec}}=0001111_{\text{bin}}$

- DO iborder_8_1=0,255 DO n_1=0,2*L*L DO k_1=0,4*L*L+4 DO iborder_8_2=0,255 link=IEOR(iborder_8_1,iborder_8_2) kk=0
 - DO i=0,7
 - kk=kk+IAND(ISHFT(link,-i),1)
 ENDDO

DO n_2=0,2*L*L DO k_2=0,4*L*L+4 $mega_8x8(n_1+n_2,k_1+k_2+kk) =$ & omega_8x8(n_1+n_2,k_1+k_2+kk)+ & 1.0q0*omega_8x4(iborder_8_1,n_1,k_1) *omega_8x4(iborder_8_2,n_2,k_2) & ENDDO

• • •

- This procedure on SGI 2800 machine takes only 22 hours of the machine time instead of a few million years in case of the usage of the traditional/direct method.
- Successive merging may be repeated recursively to obtain the partition function for larger lattices.

2.3 Monte Carlo simulation

- Standard Monte Carlo Metropolis algorithm is applied to determine the magnetic spin susceptibility of a 1000×1000 Ising lattice.
- After getting equilibrium, each point of the plot is obtained as the time average over a thousand of time steps.

2.4 Mean field approach

For two sublattices α and γ :

$$m_{\alpha} = \tanh \left(\beta (Jm_{\gamma} + H)\right)$$

 $m_{\gamma} = \tanh \left(\beta (Jm_{\alpha} + H)\right)$

where J < 0

 $T_C = -J/k_B$ $\chi = (m_{\alpha} + m_{\gamma})/H$ for $H \rightarrow 0$.

2.5 Experimental data

- The experimental data are collected from Ref. [2]. They concern two-dimensional Ising antiferromagnets Rb₂CoF₄ and K₂CoF₄ where $S = \pm 1$.
- The Van Vleck susceptibility is subtracted to obtain a pure spin contribution.

3 Results

- $\Omega_{8\times 8}(n,k)$
- $\chi(T)$ for J < 0

Figure 2: $\Omega_{4\times4}(n,k)$, $\Omega_{6\times6}(n,k)$, $\Omega_{8\times8}(n,k)$

Figure 3: $\chi(T)$

4 Conclusions

- The function Ω(n,k), once known, can be easily used for the calculation of all equilibrium thermodynamic properties, for ferro- and antiferromagnets, various values of temperature and magnetic field.
- The summation over n and k is much faster, than the summation over 2⁶⁴ spin configurations.

- As for our knowledge, the partition function has never been calculated exactly for the lattice as large as 8 × 8.
- In principle, the algorithm can be applied to larger lattices, with a cost of more time and memory.
- The computational mountain remains infinite, but its slope is a little bit reduced.

- [1] K.Malarz et al, Int. J. Mod. Phys. C13 (2003) 689.
- [2] D.J.Breed, K.Gilijamse and A.R.Miedema, Physica 45 (1969) 205.
- [3] http://www.zis.agh.edu.pl/omega/

periodic boundary conditions

Figure 4: $\Omega_{4\times 4}(n,k)$, $\Omega_{6\times 6}(n,k)$

periodic boundary conditions

Figure 5: $\Omega_{4\times 4}(n,k)$, $\Omega_{6\times 6}(n,k)$