Cellular automata designed for simulation of films growth

Krzysztof Malarz
http://home.agh.edu.pl/malarz/

Faculty of Physics & Applied Computer Science AGH University of Science & Technology Kraków, Poland

1 Introduction [1]

MBE = growth of an oriented single-crystal film of one material upon a single-crystal substrate of another when the main microscopic process is particles deposition followed by their diffusion on the surface — may be grouped to continuum and discrete approaches

2 Cellular automata (CA) [2]

- large lattice of sites
- each site carries an discrete information
- a state of site at time t + 1 depends on their own and their neighbours states at time t

CA = network + set of site's states + rule of game

3 Surface characteristics

- film height $h(\vec{r},t)$ with θ on average
- height-height correlation function

$$G(\vec{s}) \equiv \langle h(\vec{r} + \vec{s})h(\vec{r}) \rangle - \langle h(\vec{s}) \rangle^2$$

• film roughness, i.e. surface width

$$\sigma \equiv \sqrt{G(\vec{0})}$$

surface anisotropy

$$\mathbf{\epsilon} \equiv \frac{G(\hat{x}) - G(\hat{y})}{G(\vec{0})}, \qquad \mathbf{\epsilon}_1 \equiv \frac{\mathbf{\phi}_x - \mathbf{\phi}_y}{\mathbf{\phi}_x + \mathbf{\phi}_y},$$

$$\varepsilon_2 \equiv \phi_x/\phi_y, \qquad \varepsilon_3 \equiv \ell/A,$$

where ϕ_x and ϕ_y are *x*- and *y*-side of the minimal rectangle which totally covers whole cluster, ℓ is the cluster perimeter and *A* is the the cluster area.

 surface selfaffinity = surface shape and statistical properties are invariant when simultaneously

$$r \rightarrow \lambda r$$

and

 $h(r) \rightarrow \lambda^{H} h(r)$

• dynamic Family–Vicsek scaling law [5]:

$$\boldsymbol{\sigma} \propto L^{\boldsymbol{\alpha}} f(\boldsymbol{\theta}/L^{\boldsymbol{\gamma}})$$

with

$$f(x) = \begin{cases} x^{\beta} & \text{for } x \ll 1, \\ 1 & \text{for } x \gg 1, \end{cases}$$

where *L* is linear size of substrate, α , β , γ are roughness, growth and dynamic

exponent, respectively

$$\xi \propto L^{1/\gamma}$$
 and $\gamma = \alpha/\beta$

- correlation length ξ
- before reaching $\theta_{\infty} \propto L^{\gamma}$ roughness grows like θ^{β} and then saturates on $\sigma_{\infty} \propto L^{\alpha}$.

4 Deterministic SOS models

solid-on-solid approximation (SOS): no overhangs or voids and surface may be fully characterised by a single-valued function h(x,t)

4.1 Random deposition model (RDM)

$T \rightarrow 0$, no diffusion

$$P(h;\theta) = \frac{\theta^h}{h!} \exp(-\theta); \quad \beta = 1/2; \quad \alpha = \infty$$

4.2 Family model [6]

RDM + surface diffusion to site with minimal height

 $h_{\min} = \min\{h(r-R,t),\ldots,h(r+R,t)\}$

4.3 Das Sarma–Tamborenea model [7]

RDM + surface diffusion to a kink site

4.4 Wolf–Villain model [8]

RDM + surface diffusion to site with maximal z

5 Probabilistic SOS models

- before Arrhenius-like energy-activated
- full-reversible-diffusion kinetics model governed
- by diffusion constant $D = D_0 \exp(-E_a/k_B T)$ one
- may wish use probabilistic CA
- CA rule involves tossing the coin

5.1 Adding substrate temperature

 binding energy at place of deposition and NN:

$$E_{i,j} = n_x^{i,j} J_x + n_y^{i,j} J_y + n_x^{i,j-1} S_x + n_y^{i,j-1} S_y.$$

diffusion to one of NN with probability

$$P_i \propto \exp(-E_i/k_BT)$$

reduced by

 $\exp(V_x/k_BT)$ or $\exp(V_y/k_BT)$,

where V is diffusion barrier

Figure 1: Model parameters S and J.

5.2 Toward Arrhenius-like kinetics [12]

- We start our simulation with perfectly flat substrate.
- Every τL^2 time steps new jet of $\theta_{dep}L^2$ particles arrives.
- Each time step between subsequent acts of the depositions — particles 'sitting' on the column top may diffuse on the surface.

- The only mobile particles are those which currently have less than z_x and z_y created particle-particle lateral bonds (PPLB) in xand y-direction, respectively.
- For isotropic case only one number *z* guards the particles mobility.
- Active particles and their movement directions are picked up randomly.

- The particles are not allowed to climb on higher levels, but they are able to jump down at the terrace edge.
- The simulation is carried out until a desired film thickness θ_{max} has been deposited.

Here we show some results presented in Refs. [9, 10, 11, 12]

- 6.1 Submonolayer growth [11]
 - $\theta = 0.1$ [ML]
 - anisotropy in *E* and *V*:

Ag:
$$V_x/V_y = 0.736$$
, $E_x/E_y = 9.000$
Cu: $V_x/V_y = 0.793$, $E_x/E_y = 6.857$

Influence of the substrate temperature on surface morphology:

- randomly deposited monomers
- long 1D chains
- larger 2D but still anisotropic clusters
- and again randomly deposited small atomic island

L=256, θ=0.1 ML

6.2 Surface roughness [9, 12]

Figure 2: $J \rightarrow -\infty, V = 0, \langle h \rangle = 10$ [ML]

Figure 3: $J = 0, V \rightarrow \infty, \langle h \rangle = 10$ [ML]

Figure 4: $J > 0, V = 0, \langle h \rangle = 10$ [ML]

 $J \rightarrow -\infty$ and $V = 0 \rightarrow \alpha \approx 0.78$ and $\beta \approx 0.22$

Table 1:
$$heta_{\mathsf{dep}}=0.1$$
 [ML], $au=1$

Z.	1	2	3	4
α	0.863	0.215	0.1005	0.0718
β	0.357	0.123	0.0405	0.0228

Figure 5: z = 1, $L = 10^3$, $\theta_{dep} = 0.1$ [ML]

Figure 6: z = 2, $L = 10^3$, $\theta_{dep} = 0.1$ [ML]

Figure 7: z = 3, $L = 10^3$, $\theta_{dep} = 0.1$ [ML]

Figure 8: z = 4, $L = 10^3$, $\theta_{dep} = 0.1$ [ML]

Figure 9: z = 1, $\theta_{dep} = 0.1$ [ML] and $\tau = 1$

Figure 10: z = 2, $\theta_{dep} = 0.1$ [ML] and $\tau = 1$

Figure 11: z = 3, $\theta_{dep} = 0.1$ [ML] and $\tau = 1$

Figure 12: z = 4, $\theta_{dep} = 0.1$ [ML] and $\tau = 1$

(e) $\theta_{dep}=0.1$ [ML], $\tau=1$

Figure 13: $\theta_{dep} = 0.1$ [ML] and $\tau = 1$

Figure 14: L = 100, z = 4, $\theta_{dep} = 0.1$ [ML]

Figure 15: L = 1000, $\tau = 1$, z = 1 and $\theta_{dep} = 0.01, \cdots, 2.0$ from bottom to top

Figure 16: L = 1000, $\tau = 1$, z = 4 and $\theta_{dep} = 0.01, \cdots, 2.0$ from bottom to top

6.3 Anisotropic growth [10, 12]

The combination of all the information form G(1,0), G(0,1) and G(1,1) is indicative of the type of film morphology, its roughness and anisotropy.

Table 2: $\epsilon_{1,2,3}$ for different $z_{x,y}$

1	2	1	3	2	3
2	1	3	1	3	2
0.42	-0.42	0.46	-0.46	0.01	-0.01
3.05	0.44	3.32	0.41	1.11	1.04
2.61	2.61	2.61	2.61	3.56	3.56

6.4 Surface selfaffinity

anisotropic case: $J_x
ightarrow -\infty$, $V_y
ightarrow \infty$

Figure 17: $\langle h \rangle = 2^4$ [ML]

Figure 18: $\langle h \rangle = 2^8$ [ML]

Figure 19: $\langle h \rangle = 2^{12}$ [ML]

Figure 20: $\langle h \rangle = 2^{16}$ [ML]

Figure 22: $\langle h \rangle = 2^8$ [ML]

Figure 23: $\langle h \rangle = 2^{12}$ [ML]

Figure 24: $\langle h \rangle = 2^{16}$ [ML]

Acknowledgements

The machine time on SGI2800 and HP Integrity Superdome in ACK-CYFRONET-AGH is financed by the Polish Ministry of Science and Information Technology.

References

- [1] A.-L. Barabási, H. E. Stanley, Fractal concepts in surface growth (Cambridge Univ. Press, 1995)
- [2] S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, 1986)
- [3] M. A. Herman, Molecular beam epitaxy (Springer, 2000)

[4] M. Prutton, Introduction to surface physics (Oxford Univ. Press, 1986)

[5] F. Family, T. Vicsek, J. Phys. A18 (1985) L75

- [6] F. Family, J. Phys. A19 (1986) L441
- [7] S. Das Sarma, P. Tamborenea, Phys. Rev. Lett. 66 (1991) 325
- [8] D. E. Wolf, J. Villain, Europhys. Lett. 13 (1990) 389

[9] K. Malarz, A. Z. Maksymowicz, Int. J. Mod. Phys. C10 (1999) 645

- [10] K. Malarz, A. Z. Maksymowicz, Int. J. Mod. Phys. C10 (1999) 659
- [11] K. Malarz, Int. J. Mod. Phys. C11 (2000) 1561
- [12] R. Kosturek, K. Malarz, Physica A in print.