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1 Introduction

e Sociophysics Is based on the use of
concepts and tools from physics to describe
social and political behavior

e While the validity of such a transfer has been
long questioned among physicists, none ever
has expected that some basic sociophysics
guestion may In turn lead to new
development within physics



2 Ising model

1
E = ZZJijSSj, (1)
)
where § = £1 is the Ising spin variable at each
node |
; J> 0 ifl and | are neighbors,
ij —

0 otherwise,

IS short-range ferromagnetic exchange integral
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Tc(1D) =0
Tc(SLIM) = 2/arcsiniil) ~ 2.27|J/kg]

the value of the critical temperature Ic is
extracted from the evaluation of the order
parameter m= }; §/N as a function of T

Binder's cumulant U = 1 — (mf*) /(3(n?)?),
for Tc evaluation is used to avoid finite size
effect
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2.1 Glauber dynamics

e every time step all spins at the lattice are
iInvestigated In type-writer fashion

e for each spin I in an initial configuration |, a
new configuration n; resulting from the single

spin flip § — —§ is accepted with a probability
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where Ep. is the energy of configuration nj,
E,, = —En, is the energy of configuration |}



G B eXFK—Er]i/kBT)
Pli—n; = exp(—Ey /keT) +exp(—En, /kgT)
(2)

where Ep. is the energy of configuration nj,
E,, = —En, is the energy of configuration |}

e when all N spins are investigated one Monte
Carlo step (MCS) I1s completed



2.2 Metropolis scheme

e the acceptance probability of the new
configuration

pﬁfﬁm = min{1,exp—(Ey —Ey)/keT|} (3)

e but here, at each MCS, all the spins are
randomly visited and updated
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3 The Solomon network [ 1]

e INn many sociological models, the behavior of
each person is influenced by the neighbors,
or influences the neighbors

e however, the neighbors in the workplace are
different from the neighbors at home
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e thus the workplace neighborhood and the
home neighborhood can be simulated by
using two lattices of N sites each, the home
lattice and the workplace lattice

e In the workplace lattice, the people are
numbered consecutively fromi1 = 1tol = N
with helical boundary conditions
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random permutation of the order on the
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e the same people also show up on the home
lattice, but an different order which is a
random permutation of the order on the
workplace lattice

e a simplified version of this two-lattice model
uses only one lattice, and defines the
neighborhood of each site as being the
nearest neighbors plus one randomly
selected site anywhere In the lattice
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e for a chain the neighbors of | are thus

| £ 1,1+ Rwhere Ris a random distance;
these neighbors can be compared with those

of the honeycomb lattice: 1 £ 1,1+ L

e therefore it cannot be excluded that ordering

IS found also In one dimension
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3.1 Results

e we consider 1D and 2D Ising model with one
(1N) or two (2N) additional randomly
selected neighbors

e the simulation is performed on N = 1P sites
with helical boundary conditions and initially,
att = 0, all spins are pointing up (§ = +1
fori=1,2,...,N)

e Mis averaged over the last 10* MCS
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e introducing one additional neighbor
somewhere at the lattice in 1D case shifts
the “social Curie point” from Tc = O towards

Te ~ 1.9(1) [J/kg]



e for the 1D1N case:

e we have found the critical exponent [3
(describing the critical behavior of the
magnetization in the vicinity of the transition)
equal to 1/2

e we have observed that the average absolute
value of the magnetization (|m|) for T ~ T¢

decreases with the system size
10< L <10
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4 GRIM, SLIM, TRIM [2]

e Gradually Reshuffled IM: in every MCS,
before updating all spins, with a probability p
the reshuffling procedure takes place:
random permutation of all spin labels Is
produced and their positions are rearranged
according to that new labels order

e with probability 1 — p, all spins keep their
current position



e Square Lattice IM (p = 0)

e Totally Reshuffled IM (p = 1) — Galam
model [4]

4.1 Results

e Mmvs T — I¢



e Uvs (T,N)— Tc, to get a more precise
estimate of T¢ in the thermodynamic limit
(taken over 4-10°> MCS after discarding 10°
MCS for equilibration at each T)

e U should go to 2/3 below T¢ and to zero
above Ic when the size increases, and the
finite-size estimates are expected to cross
around Tc
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4.2 The Galam unifying scheme | 3]

e We now go one step further in the investigation
of the validity of Galam unifying scheme

e It IS a general sequential frame, which operates
via local updates of small groups of spins
randomly selected



e if p(t) is the proportion of plus spins at time t,
we obtain for the new proportion p(t + 1) after

one update cycle

> (5
1) — kl_ 5—k7
i+ = 5 (1 )adpO -0 @

where gk as the probabillity that a group of five
spins with K plus and (5— k) minus ends up with

five plus



e from up-down symmetry this number reduces
to three withgo=1—0s5,01 = 1— 04 and

02 =1-—03

e we can calculate the unstable fixed points from
EqQ. (4) to get the corresponding critical
temperature

e the corresponding energies E, are calculated
as well as energies E,, are obtained once the
central spin has been flipped



4.2.1 Metropolis dynamics

 5-d

21— 4c 28
Os = = =

, 4 = 25 79325_07

where

c=exp(—4J/ksT), d=exp(—81/ksT)



4.2.2 Glauber dynamics

_4+a _ 20+a-4b  31-4b
Os = 5 , Jg = 25 , U3 = 50 :
where
a exp(4J/kBT)

~ exp(4J/keT) + exp(—4J /KsT)

GXM—ZJ/kBT)

b= exp(2] /ksT) + exp(—23 /KsT)
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5 Conclusions

e Tc = 3.09|J/kg| for Glauber scheme
e Tc = 1.59|J/kg| for Metropolis scheme

e the Glauber result is rather close to the
numerical finding Tc = 3.03 [J/kg]

e Tc alittle bit larger than 3 |J/kg| was obtained
previously by Malarz from a Monte Carlo
simulation of SN [1]
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e Galam reshuffling [4] Is neither a mean-field
treatment nor the usual Ising model (SLIM). In
particular it yields non mean field exponents

0.31~ B(TRIM) #£ B(MF) = 1/2

e does reshuffling create a new universality class

for the Ising model?

e at which value of the reshuffling parameter p
does the crossover occur?
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