Reshuffling spins with short range interactions

Krzysztof Malarz

Department of Applied Computer Science Faculty of Physics & Applied Computer Science **AGH** University of Science & Technology

Cracow, 2006-01-16

1 Introduction

 Sociophysics is based on the use of concepts and tools from physics to describe social and political behavior

1 Introduction

- Sociophysics is based on the use of concepts and tools from physics to describe social and political behavior
- While the validity of such a transfer has been long questioned among physicists, none ever has expected that some basic sociophysics question may in turn lead to new development within physics

2 Ising model

$$E \equiv -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j, \qquad (1)$$

where $S_i = \pm 1$ is the Ising spin variable at each node i

$$J_{ij} = \begin{cases} J > 0 & \text{if } i \text{ and } j \text{ are neighbors,} \\ 0 & \text{otherwise,} \end{cases}$$

is short-range ferromagnetic exchange integral

• $T_C(1D) = 0$

• $T_C(SLIM) = 2/\operatorname{arcsinh}(1) \approx 2.27 [J/k_B]$

- $T_C(1D) = 0$
- $T_C(SLIM) = 2/\operatorname{arcsinh}(1) \approx 2.27 [J/k_B]$
- the value of the critical temperature T_C is extracted from the evaluation of the order parameter $m \equiv \sum_i S_i / N$ as a function of T

- $T_C(1D) = 0$
- $T_C(SLIM) = 2/\operatorname{arcsinh}(1) \approx 2.27 [J/k_B]$
- the value of the critical temperature T_C is extracted from the evaluation of the order parameter $m \equiv \sum_i S_i / N$ as a function of T
- Binder's cumulant $U \equiv 1 \langle m^4 \rangle / (3 \langle m^2 \rangle^2)$, for T_C evaluation is used to avoid finite size effect

2.1 Glauber dynamics

• every time step all spins at the lattice are investigated in type-writer fashion

2.1 Glauber dynamics

- every time step all spins at the lattice are investigated in type-writer fashion
- for each spin *i* in an initial configuration μ_i , a new configuration η_i resulting from the single spin flip $S_i \rightarrow -S_i$ is accepted with a probability

$$p_{\mu_i \to \eta_i}^G = \frac{\exp(-E_{\eta_i}/k_B T)}{\exp(-E_{\mu_i}/k_B T) + \exp(-E_{\eta_i}/k_B T)},$$
(2)

where E_{η_i} is the energy of configuration η_i , $E_{\mu_i} = -E_{\eta_i}$ is the energy of configuration μ_i

$$p_{\mu_i \to \eta_i}^G = \frac{\exp(-E_{\eta_i}/k_B T)}{\exp(-E_{\mu_i}/k_B T) + \exp(-E_{\eta_i}/k_B T)},$$
(2)

where E_{η_i} is the energy of configuration η_i , $E_{\mu_i} = -E_{\eta_i}$ is the energy of configuration μ_i

when all N spins are investigated one Monte
 Carlo step (MCS) is completed

2.2 Metropolis scheme

• the acceptance probability of the new configuration

$$p_{\mu_i \to \eta_i}^M = \min\{1, \exp[-(E_{\eta_i} - E_{\mu_i})/k_B T]\}$$
 (3)

 but here, at each MCS, all the spins are randomly visited and updated

3 The Solomon network [1]

 in many sociological models, the behavior of each person is influenced by the neighbors, or influences the neighbors

3 The Solomon network [1]

- in many sociological models, the behavior of each person is influenced by the neighbors, or influences the neighbors
- however, the neighbors in the workplace are different from the neighbors at home

 thus the workplace neighborhood and the home neighborhood can be simulated by using two lattices of N sites each, the home lattice and the workplace lattice

- thus the workplace neighborhood and the home neighborhood can be simulated by using two lattices of N sites each, the home lattice and the workplace lattice
- in the workplace lattice, the people are numbered consecutively from *i* = 1 to *i* = N with helical boundary conditions

 the same people also show up on the home lattice, but an different order which is a random permutation of the order on the workplace lattice

- the same people also show up on the home lattice, but an different order which is a random permutation of the order on the workplace lattice
- a simplified version of this two-lattice model uses only one lattice, and defines the neighborhood of each site as being the nearest neighbors plus one randomly selected site anywhere in the lattice

 for a chain the neighbors of *i* are thus *i*±1,*i*+*R* where *R* is a random distance; these neighbors can be compared with those of the honeycomb lattice: *i*±1,*i*+*L*

- for a chain the neighbors of *i* are thus *i*±1,*i*+*R* where *R* is a random distance; these neighbors can be compared with those of the honeycomb lattice: *i*±1,*i*+*L*
- therefore it cannot be excluded that ordering is found also in one dimension

 we consider 1D and 2D Ising model with one (1N) or two (2N) additional randomly selected neighbors

- we consider 1D and 2D Ising model with one (1N) or two (2N) additional randomly selected neighbors
- the simulation is performed on N = 10⁶ sites with helical boundary conditions and initially, at t = 0, all spins are pointing up (S_i = +1 for i = 1, 2, ..., N)

- we consider 1D and 2D Ising model with one (1N) or two (2N) additional randomly selected neighbors
- the simulation is performed on N = 10⁶ sites with helical boundary conditions and initially, at t = 0, all spins are pointing up (S_i = +1 for i = 1, 2, ..., N)
- *m* is averaged over the last 10^4 MCS

А К К • introducing one additional neighbor somewhere at the lattice in 1D case shifts the "social Curie point" from $T_C = 0$ towards $T_C \approx 1.9(1) [J/k_B]$

- for the 1D1N case:
- we have found the critical exponent β (describing the critical behavior of the magnetization in the vicinity of the transition) equal to 1/2
- we have observed that the average absolute value of the magnetization $\langle |m| \rangle$ for $T \approx T_C$ decreases with the system size $10 \leq L \leq 10^4$

4 GRIM, SLIM, TRIM [2]

- Gradually Reshuffled IM: in every MCS, before updating all spins, with a probability p the reshuffling procedure takes place: random permutation of all spin labels is produced and their positions are rearranged according to that new labels order
- with probability 1 p, all spins keep their current position

- Square Lattice IM (p = 0)
- Totally Reshuffled IM (p = 1) Galam model [4]

•
$$m \text{ vs } T \rightarrow T_C$$

- $U vs (T,N) \rightarrow T_C$, to get a more precise estimate of T_C in the thermodynamic limit (taken over $4 \cdot 10^5$ MCS after discarding 10^5 MCS for equilibration at each T)
- U should go to 2/3 below T_C and to zero above T_C when the size increases, and the finite-size estimates are expected to cross around T_C

m=M/N

m=M/N

р

4.2 The Galam unifying scheme [3]

- we now go one step further in the investigation of the validity of Galam unifying scheme
- it is a general sequential frame, which operates
 via local updates of small groups of spins
 randomly selected

• if p(t) is the proportion of plus spins at time t, we obtain for the new proportion p(t+1) after one update cycle

$$p(t+1) = \sum_{k=0}^{5} {\binom{5}{k}} g_k [p(t)]^k [1-p(t)]^{5-k}, \quad (4)$$

where g_k as the probability that a group of five spins with k plus and (5 - k) minus ends up with five plus

- from up-down symmetry this number reduces to three with $g_0 = 1 g_5$, $g_1 = 1 g_4$ and $g_2 = 1 g_3$
- we can calculate the unstable fixed points from Eq. (4) to get the corresponding critical temperature
- the corresponding energies E_{μ_i} are calculated as well as energies E_{η_i} are obtained once the central spin has been flipped

4.2.1 Metropolis dynamics

$$g_5 = \frac{5-d}{5}, g_4 = \frac{21-4c}{25}, g_3 = \frac{28}{50},$$

where

$$c = \exp\left(-4J/k_BT\right), \qquad d = \exp\left(-8J/k_BT\right)$$

4.2.2 Glauber dynamics

$$g_5 = \frac{4+a}{5}, g_4 = \frac{20+a-4b}{25}, g_3 = \frac{31-4b}{50},$$

where

$$a = \frac{\exp(4J/k_BT)}{\exp(4J/k_BT) + \exp(-4J/k_BT)}$$
$$b = \frac{\exp(-2J/k_BT)}{\exp(2J/k_BT) + \exp(-2J/k_BT)}$$

• $T_C = 3.09 [J/k_B]$ for Glauber scheme

• $T_C = 3.09 [J/k_B]$ for Glauber scheme

• $T_C = 1.59 [J/k_B]$ for Metropolis scheme

- $T_C = 3.09 [J/k_B]$ for Glauber scheme
- $T_C = 1.59 [J/k_B]$ for Metropolis scheme
- the Glauber result is rather close to the numerical finding $T_C = 3.03 [J/k_B]$

- $T_C = 3.09 [J/k_B]$ for Glauber scheme
- $T_C = 1.59 [J/k_B]$ for Metropolis scheme
- the Glauber result is rather close to the numerical finding $T_C = 3.03 [J/k_B]$
- T_C a little bit larger than 3 $[J/k_B]$ was obtained previously by Malarz from a Monte Carlo simulation of SN [1]

• Galam reshuffling [4] is neither a mean-field treatment nor the usual Ising model (SLIM). In particular it yields non mean field exponents $0.31 \approx \beta(TRIM) \neq \beta(MF) = 1/2$

- Galam reshuffling [4] is neither a mean-field treatment nor the usual Ising model (SLIM). In particular it yields non mean field exponents $0.31 \approx \beta(TRIM) \neq \beta(MF) = 1/2$
- does reshuffling create a new universality class for the Ising model?

- Galam reshuffling [4] is neither a mean-field treatment nor the usual Ising model (SLIM). In particular it yields non mean field exponents $0.31 \approx \beta(TRIM) \neq \beta(MF) = 1/2$
- does reshuffling create a new universality class for the Ising model?
- at which value of the reshuffling parameter *p* does the crossover occur?

Acknowledgements

- D.Stauffer, Univ. Cologne (DE)
- A.O.Sousa, Univ. Stuttgart (DE)
- S.Galam, École Polytechnique, Paris (FR)
- HP Integrity Superdome, ACK-CYFRONET-AGH (PL)
- grant No. MNiI/HP_I_SD/AGH/047/2004, the Ministry of Education and Science (PL)

References

- [1] KM, Int. J. Mod. Phys. C 14 (2003) 561.
- [2] A.O.Sousa, <u>KM</u>, S.Galam, Int. J. Mod. Phys. C 16 (2005) 1507.
- [3] S.Galam, Eur. Phys. Lett. 70 (2005) 705.
- [4] S.Galam, J. Math. Psychol. 30 (1986) 426.