Collective behaviour in clustered social networks

Maciej Wołoszyn¹, Dietrich Stauffer², Krzysztof Kułakowski¹

¹Faculty of Physics and Applied Computer Science AGH University of Science and Technology Kraków, Poland

> ²Institute of Theoretical Physics University of Köln Germany

March 19, 2007

The Strength of Weak Ties by Mark S. Granovetter¹:

- new information is passed on mainly via distant connections (weak ties) between the groups (cliques),
- community completely partitioned into cliques is usually unable to organise.

¹M.S. Granovetter, Am. J. of Sociology **78** (1973) 1360

Maciej Wołoszyn (AGH Kraków)

Collective behaviour in clustered social...

Model of community proposed by Duncan J. Watts et al.²

• N individuals ...

²D.J. Watts, P.S. Dodds, M.E.J. Newman, Science 296 (2002) 1303 🚊 🕤

Maciej Wołoszyn (AGH Kraków) Collective behaviour in clustered social...

Model of community proposed by Duncan J. Watts et al.²

• N individuals ...

²D.J. Watts, P.S. Dodds, M.E.J. Newman, Science **296** (2002) 1303 and a second

4/18

 Maciej Wołoszyn (AGH Kraków)
 Collective behaviour in clustered social...
 2007-03-19

Model of community proposed by Duncan J. Watts et al.²

• N individuals ...

• ... in small groups (g individuals each) ...

• ... forming a hierarchy

²D.J. Watts, P.S. Dodds, M.E.J. Newman, Science **296** (2002) 1303

Maciej Wołoszyn (AGH Kraków)

Collective behaviour in clustered social...

Distance between individuals:

- x = 1 for members of the same group,
- x = 2 for members of the nearest neighbouring groups,
- x = 3 for members of the next nearest neighbouring groups,

• . . .

 link between nodes *i* and *j* is established randomly, with probability

 $p_{ij} \propto \exp(-\alpha x_{ij})$

link between nodes *i* and *j* is established randomly, with probability

 $p_{ij} \propto \exp(-\alpha x_{ij})$

- *α* homophily parameter: controls the topology of the network,
 - $\alpha \rightarrow +\infty \Rightarrow$ separation into small groups,
 - $\alpha = -\ln 2 \Rightarrow$ random graph, (in general $\alpha = -\ln b$, where b – branching ratio)
 - $\alpha \to -\infty \Rightarrow$ only links to individuals from the most distant groups,

link between nodes *i* and *j* is established randomly, with probability

 $p_{ij} \propto \exp(-\alpha x_{ij})$

- *α* homophily parameter: controls the topology of the network,
 - $\alpha \rightarrow +\infty \Rightarrow$ separation into small groups,
 - $\alpha = -\ln 2 \Rightarrow$ random graph, (in general $\alpha = -\ln b$, where b – branching ratio)
 - $\alpha \to -\infty \Rightarrow$ only links to individuals from the most distant groups,
- an *average* number of neighbours z = g 1 is assured

< 🗇 > < 🖻 > <

Adjacency matrix (example for N = 80, g = 5)

Collective behaviour in clustered social...

The largest connected part of the network

Maciej Wołoszyn (AGH Kraków)

Collective behaviour in clustered social...

• for any given node *i*

 $C_i = \frac{(\text{links between the vertices within its neighbourhood})}{(\text{number of links that could possibly exist between them})}$

• for any given node *i*

 $C_i = \frac{(\text{links between the vertices within its neighbourhood})}{(\text{number of links that could possibly exist between them})}$

and for the whole system

$$C = rac{1}{N}\sum_{i=1}^N C_i$$

Clustering coefficient

Maciej Wołoszyn (AGH Kraków) Collective behaviour in clustered social...

2007-03-19 10 / 18

• each node $i \mapsto \text{spin-like variable } s_i = \pm 1$ (binary approximation of opinions)

< 🗇 🕨 < 🖃 >

• each node $i \mapsto \text{spin-like variable } s_i = \pm 1$ (binary approximation of opinions)

 each link (*i*, *j*) → interaction energy *J_{ij}* = *J* > 0 (same opinions preferred for neighbours)

\Rightarrow a magnet with topology similar to Granovetter's suggestion

イロト イヨト イヨト

 \Rightarrow a magnet with topology similar to Granovetter's suggestion

- is there any kind of phase transition ordering of spins ?
 - (ability of the social system to collective action?)

• Glauber dynamics – flip probability:

$$p(s_i \rightarrow -s_i) = \frac{1}{1 + \exp(\Delta E/kT)}$$

- calculation details:
 - time = 10^5 steps (results averaged over last 5×10^4 steps)

Magnetisation

Σ

Maciej Wołoszyn (AGH Kraków) Collective behaviour in clustered social...

2007-03-19 14/18

Critical temperature

(averaged over 4 samples)

Maciej Wołoszyn (AGH Kraków)

Collective behaviour in clustered social...

2007-03-19 15/18

Relaxation time (for $\alpha \ge 10$)

• only small, separated groups of g = 5 nodes

Maciej Wołoszyn (AGH Kraków) Collective behaviour in clustered social...

2007-03-19 16 / 18

• ties connecting local groups are weak, but still exist

2007-03-19 17/18

Conclusions

- there is a critical value of the homophily parameter
- *T_c* sharply decreases right above α = 0 where the network is still connected, but links are too scarce to maintain ordering
- effectiveness of the social interaction depends on the topology of social network: too sparse connections between small groups restrain collective behaviour

